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Abstract: Simulations of flow in porous media can even help modeling tsunami interactions on a shore-
line. A modeling of filtration processes would require introducing different systems of partial differential 
equations in the free fluid and in the porous medium regions. Such equations must be coupled through 
physically continuity conditions at the interface separating the two domains. We will use the well-known 
Beavers-Joseph interface and propose iterative methods to solve the coupling of the Navier-Stokes and 
Darcy equations.  
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1. INTRODUCTION 
 
A modeling of filtration processes would require 
introducing different systems of partial differential 
equations in the free fluid and in the porous 
medium regions. The difficulty in finding effective 
coupling conditions at the interface between the 
fluid domain and the porous layer lies in the fact 
that often the orders of the corresponding 
differential operators are different, e.g. when using 
Navier-Stokes and Darcy’s equation. The model 
we consider, which is similar to the one in [1] is 
based on imposing the correct local equation in 
each region, coupled with appropriate interface 
conditions. 
 
 

2. MODEL PROBLEM 
 
The aim of our research is to begin the study 
of the following problem: an incompressible 
fluid in a region who can flow both ways 
across an interface into a domain which is a 
porous medium saturated with the same fluid 
same as [7,8, 10-15,18]. 

 Let dΩ ⊂ (d=2,3) be a bounded 
domain, decomposed into two non intersecting 
subdomains  fΩ   and separated by an 

interface , i.e. 
pΩ

Γ ,f p f pΩ = Ω ∪ Ω Ω ∩ Ω = ∅  

şi f pΩ ∩ Ω = Γ . We suppose the boundaries 

f∂Ω şi to be Lipschitz continuous. From 
the physical point of view,  is a surface 
separating the domain 

p∂Ω
Γ

fΩ  filled by a fluid, 
from a domain  formed by a porous 
medium. We assume that the fluid contained in 

pΩ

fΩ  has a fixed surface (i.e. we do not consider 
the free surface fluid case) and can filtrate 
through the adjacent porous medium. 
In order to describe the motion of the fluid in 

, we introduce the Navier–Stokes 
equations: �t > 0, 

pΩ

( , ) ( )t f f f f f fu T u p u u f în∂ − ∇ ⋅ + ⋅∇ = Ω  
     

0f fu în∇ ⋅ = Ω     (1) 



where ( , ) ( )T
f f f fT u p u u p Iν= ∇ + ∇ − f is the 

Cauchy stress tensor, 0ν > is the kinematic 
viscosity of the fluid, while fu  and fp are the 
fluid velocity and pressure. 
∇ and ∇· are, respectively, the gradient and 
the divergence operator with respect to the 
space coordinates. Moreover, 

1 1,...,

d

j ij
j i d

u u
= =

⎛ ⎞
∇ ⋅ = ∂⎜ ⎟

⎝ ⎠
∑

 
 Finally, we recall that 

1
( )

d

i i
i

v w v
=

⋅∇ = ∂∑ w

)
 

for all vector functions  and 

 
( 1,..., dv v v=

( )1,..., dw w w=
 In the domain we define the 

piezometric head 

pΩ

p

f

p
z

g
ϕ

ρ
= +  where z is the 

elevation from a reference level,  is the 
pressure of the fluid in , 

pp

pΩ fρ  its density and 
g is the gravity acceleration. 
 The fluid motion in is described by 
the equations: 

pΩ

0pu∇ ⋅ = in     (2)  pΩ

pu K ϕ= − ∇  in  pΩ
where  is the fluid velocity, and K is the 
hydraulic conductivity tensor 

 with 
 

pu

1 2 3( ,diag=K K ,K K )
)Ω, 1,...,( ) (ij i j d pL∞

== ∈K K
The first equation is Darcy’s law. In the 
following we shall denote  /K n= K
 Darcy’s law provides the simplest 
linear relation between velocity and pressure 
in porous media under the physically 
reasonable assumption that fluid flows are 
usually very slowed all the inertial (nonlinear) 
terms may be neglected. 
 For the sake of clarity, in our analysis 
we shall adopt homogeneous boundary 
conditions. In particular, for the Navier–Stokes 
problem we impose the no-slip condition 

on , while for the Darcy 
problem, we set the piezometric head 

0fu = \f∂Ω Γ
ϕ  = 0 

on  and we require the normal velocity to 

be null on  .  and 

pΓ

pΓ 0f ju τ⋅ = pn fn denote 
the unit outward normal vectors to the surfaces 

fΩ  and  and we have pΩ f p= −n n on . We 
suppose   and 

Γ

pn fn to be regular enough. In 
the following we shall indicate  for 
simplicity of notation. 

pn = n

 We supplement the Navier–Stokes and 
Darcy problems with the following conditions 
on Γ : 

f pu n u n⋅ = ⋅ ,      
     (3) 

( , )f fn T u p n gϕ− ⋅ ⋅ =     
     (4) 

( , ) ( )BJ
j f f f pT u p n u u

K j
νατ τ− ⋅ ⋅ = − ⋅ on Γ  

     (5) 
where jτ (i = 1, . . . , d − 1) are linear 
independent unit tangential vectors to the 
boundary  , and  is the characteristic 
length of the porous medium. 

Γ BJα

 Conditions (3) and (4) impose the 
continuity of the normal velocity on  , as 
well as that of the normal component of the 
normal stress, however they allow pressure to 
be discontinuous across the interface. The so-
called Beavers–Joseph condition (5) is used 
here instead of Beavers–Joseph-Saffman that 
were mathematically proven in [17]. 

Γ

 The coupled Navier-Stokes/Darcy 
model is as follows: 

( , ) ( )t f f f f f fu T u p u u f in∂ − ∇ ⋅ + ⋅∇ = Ω  
0f fu in∇ ⋅ = Ω     

      
pu K in pϕ= − ∇ Ω      

      
in     

   (6)  
  pe      
      

0pu∇ ⋅ = pΩ

f pu n u n⋅ = ⋅ Γ

( , )f fn T u p n gϕ− ⋅ ⋅ =  on Γ     
      

( , ) (u )BJ
j f f f p jT u p n u

K
νατ τ− ⋅ ⋅ = − ⋅ on Γ  

 We define the following spaces: 
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{ }1( ) : 0 \d
f fH v H v on= ∈ Ω = ∂Ω Γf f  

{ }0 ( ) : 0f f fH v H v n on= ∈ Ω ⋅ = Γ (7) 

2 ( )fQ L= Ω ,  0 : 0
f

Q q Q q
Ω

⎧ ⎫⎪ ⎪= ∈ =⎨
⎪ ⎪⎩ ⎭

∫ ⎬

{ }1( ) : 0 D
p pH H onψ ψ= ∈ Ω = Γ p , 

{ }0 : 0p pH H oψ ψ= ∈ = Γn  

 We denote by 
1

⋅  şi 
1

⋅  the H1-

seminorm and norm and by 
2

⋅  the L2-norm; 

it will always be clear form the context 
whether we are referring to spaces on fΩ  and 

. Finally, we consider the trace space 

 şi 
pΩ

1/ 2
00 ( )HΛ = Γ Λ

 and its subspace. 
 Then, we introduce the bilinear forms 

( )
1

1

( , ) ( ) ( )
2

( )

f

T T
f

d
BJ

j j
j

a v w v v w w

u K v
K

υ

να ϕ τ τ

Ω

−

Γ
=

= ∇ + ∇ ⋅ ∇ + ∇

⎡ ⎤+ + ∇ ⋅ ⋅⎣ ⎦

∫

∑∫
 

 1, ( ( ))d
fv w H∀ ∈ Ω

( , )
f

fb v q q v
Ω

= − ∇⋅∫    1( ( ))d
fv H∀ ∈ Ω q Q∀ ∈

( , )
p

pa Kϕ ψ ψ ϕ
Ω

= ∇ ⋅ ∇∫   1, ( pHϕ ψ∀ ∈ Ω )

)⋅

)

( ), ( ) (a v w g w n g v nϕ ψΓ Γ Γ
= ⋅ −∫ ∫  

( ), ( , ) ( ,f pa v w a v w a ϕ ψΩ = +  
and the trilinear form 

, 1
( ; , ) [( ) )]

f

d
i

f
f j

i j j

zc w z v w z v w vixΩ Ω
=

∂= ⋅∇ ⋅ =
∂∑∫ ∫  

  (8) 1, , ( ( ))d
fv w y H∀ ∈ Ω

 By integration by parts as in [20], the 
weak formulation for the above coupled 
Navier-Stokes/Darcy problem reads:  

Fiind ( , )u Wϕ= ∈u p Q∈

∈
,  that  

where
( )

( , ) ( ; , ) ( , ) ( ) ( , )

( , ) 0 9

A u v C u u v B u p F v v W

B u q q Q

ψ⎧ + + = ∀ =⎪
⎨

= ∀ ∈⎪⎩

v

( , ) ( , ) ( , )A v w a v w a ϕ ψΩ Γ= +  
( ; , ) ( ; , )fC v w u c v w u=  
( , ) ( , )fB u p b w q=  

( )
f

F v fv
Ω

= ∫  

 The weak formulation for the above 
coupled (stationary) Stokes/Darcy problem 
reads:  
Fiind ( , )u Wϕ= ∈u p Q∈,  that  

( )
( , ) ( , ) ( ) ( , )

( , ) 0 10

A u v B u p F v v W

B u q q Q

ψ⎧ + = ∀ = ∈⎪
⎨

= ∀ ∈⎪⎩

v
   

 Similar to [6], it is easy to verify that 
A(·, ·) is continuous and coercive on W and 
B(·,·) is continuous on W  and satisfies the 
well-known Brezzi - Babuska condition: 

Q×

there exists a positive constant 0β >  such 
that  such that ,q Q w W∀ ∈ ∃ ∈

( , )
W

b w q w qβ≥
Q

   

 The well-posedness of the model 
problem (10) then follows from Brezzi’s 
theory for saddle-point problems [4]. The 
continuity is obvious, while the coercivity is 
still a consequence of the well-known Poincare 
inequality and Korn inequality and using 
Lemma 3.2 from [9]. The bilinear functional 
A(·, ·)  is continuous and coercive on 

(W-elliptic) when the coefficient in the 
Beavers-Joseph interface boundary condition 

 is small enough. 

W W×

α
 
3. ITERATIVE FINITE ELEMENT 
SOLUTION OF THE COUPLED 
PROBLEM 
  



In this section, we introduce and analyze an 
iterative method to compute the  solution of a 
conforming finite element approximation of 
(16)–(18). For the easiness of notation, we will 
write the algorithms in continuous form. 
However, they can be straightforwardly 
translated into a discrete setting considering 
conforming internal Galerkin approximations 
of the spaces (7). 
 Moreover, the convergence results that 
we will present hold in the discrete case 
without any dependence of the convergence 
rate on the grid parameter h, since they are 
established by using the properties of the 
operators in the continuous case. 
 We consider a triangulation  of the 

domain 
hT

f pΩ ∪ Ω , depending on a positive 
parameter , made up of triangles if d = 2, 
or tetrahedra in the three-dimensional case. 
We assume that the triangulations induced on 
the subdomains 

0h >

fΩ  and  are compatible on 
, that is they share the same edges (if d = 2) 

or faces (if d = 3) therein. 

pΩ
Γ

 The crucial issue concerning the finite 
dimensional spaces, say  and , 
approximating the spaces of velocity and 
pressure is that they must satisfy the discrete 
compatibility condition:  

hV hQ

there exists a positive constant , 
independent of h, such that 

* 0β >

*
1 0

, ,

( , )
h h h h h

h h h h h

q Q v V v

b v q v qβ
∀ ∈ ∃ ∈ ≠

≥

0 :

0P

1

2

 (30)  

Spaces satisfying (30) are said inf-sup stable. 
 Several choices can be made in this 
direction featuring both discontinuous pressure 
finite elements (e.g., the P elements or 
the Crouzeix-Raviart elements defined using 
cubic bubble functions) and continuous 
pressure finite elements: among the latter we 
recall the Taylor-Hood (or ) elements 
and the elements. 

2 −

2 −P P

1isoP P
 We have indicated by the subscript h 
the finite element approximations of fu , fp  
andϕ . 

 The following error estimates hold. 
There exist two positive constants C1 and C2 
such that 

( )1 1
, 1,h r

S f fr r
E C h u p r

+
≤ + 2=

)

. If  
1(r

f fu H +∈ Ω  and (r )f fp H∈ Ω  where 

0

h
S f fh f fE u u p p= ∇ − ∇ + −

0h  while 

2 1
, min(2,h l

D l
E C h l sϕ

+
≤ = 1)− . 

If   with  ( ), 2s
pH sϕ ∈ Ω ≥ h

D h l
E ϕ ϕ= −  

3.1 Fixed – point iterations 
Fixed-point iterations to solve the coupled 
problem (9) can be written as follows
find , ,f f f pp Q Hϕ∈ ∈ ∈

⋅

u H  such that 
1( , ) ( , ) ( , , ) ( )n n n n n

f f f f f f fa u v b v p c u u v g v nϕ−

Γ
+ + + ∫

 
1

1

( ) ( )
f

d
n nBJ
f j j

j

u K v f
K

να ϕ τ τ
−

Γ Ω
=

⎡ ⎤+ + ∇ ⋅ ⋅ =⎣ ⎦∑ v∫ ∫  

( , ) 0n
f fb u q =  

 

for all , ,f pv H q Q Hψ∈ ∈ ∈  
3.2 Newton-like methods 
Let us consider now the Newton method to 
solve (the discrete form of) ( ). 9
find , ,n n n

f f f pp Q Hϕ∈ ∈ ∈u H  such that 
1

1

1

1 1

( , ) ( , ) ( , , ) ( )

( ) ( )

( , , )
f

n n n n n
f f f f f f f

d
n nBJ
f j j

j

n n
f f f

a u v b v p c u u v g v n

u K v
K

c u u v fv

ϕ

να ϕ τ τ

−

Γ

−

Γ
=

− −

Ω

+ + +

⎡ ⎤+ + ∇ ⋅ ⋅⎣ ⎦

= +

∫

∑∫

∫
( , ) 0n

f fb u q =

⋅

n

 

( , ) ( )n n
p fa uϕ ψ ψ

Γ
= ⋅∫  

for all , ,f pv H q Q Hψ∈ ∈ ∈

)
) )

( , ) ( )n n
p fa u nϕ ψ ψ

Γ
= ⋅∫

 
We consider the computational domain 

with and 

 and Ω =  
and uniform regular triangulations 
characterized by a parameter h. We use 
Taylor-Hood elements for the Navier-Stokes 
equations and quadratic Lagrangian elements 
for the Darcy equation . 

( ) (0,  1  x 0,  2Ω =

( ) (0,  1  x 1,  2fΩ = ( ) (0,  1  x 0,1p
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In a first test, we set the boundary conditions 
in such a way that the analytical solution for 
the coupled problem is  

[2 2 32( , 2 sin(
3

y
fu x y e xy xπ π−= + − + − ]) )  

[ ]2 sin( ) cos(2f )p x yπ π π= − −  

[ ][ ]2 sin( ) cos( (1 ))x y yϕ π π π= − − + −  
In order to check the behavior of the iterative 
methods that we have studied with respect to 
the grid parameter h, to start with we set the 
physical parameters (v, K, e, g) all equal to 1. 
The algorithms are stopped as soon as 

2 2

1 / 1n n n

L L
x x x− −− 100≤ , where 2L

⋅  is the 

 norm and 2L nx  is the vector of the nodal 
values of ( ), ,n n n

f fu p ϕ  Our initial guess 

is . 0 0fu =
The number of iterations obtained using the 
fixed-point algorithm, the Newton method  are 
displayed in Table 1.  
 
h Fixed-point Newton 

22−  23 11 
32−  23 11 
42−  23 11 
52−  23 11 

 
All methods converge in a number of 
iterations which does not depend on h. 
We present the CPU times. Table 2 shows the 
CPU times for the Navier-Stokes/Darcy model 
and the three methods. It is very clear that 
Newton algorithm is with significant reduction 
in computational time.  
 
h Fixed-point Newton 

22−  11.30 10×  10.60 10×  
32−  21.343 10×  21.021 10×  
42−  31.343 10×  1  30.43 10×
 

 
3. CONCLUSIONS & 

ACKNOWLEDGMENT 
 
The numerical algorithms for solving the 
coupled system of free fluid and porous media 
are separated into three major categories: 
- the first group of methods uses different 
equations in different domains, e.g., the 
Navier–Stokes equation in the liquid region 
and the Darcy model in the porous zones and 
couples them through suitable interface 
conditions. These kind of algorithms use 
domain decomposition techniques 
- the second group consists of those 
algorithms, that solely uses one system of 
equations in the whole domain obtaining the 
transition between both fluid and porous 
regions through continuous spatial variations 
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- the two method grid by decoupling the mixed 
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This algorithm is very good. 
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